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Introduction by the Organizers

The RTG 2491 “Fourier Analysis and Spectral Theory” is the home of mathe-
matical research and education of doctoral students. The research focuses around
a common methodology: we apply techniques from spectral theory, in particular
Fourier analysis and harmonic analysis. We do this in a variety of areas, from
number theory to to differential equations and mathematical physics.

Mathematical research tends to be quite specialized and sophisticated. As a
consequence, it is often not easy to communicate what we are actually working at,
and why this is exciting us so much —as typically it does.

But it is a matter of fact that the truly exciting progress in most cases arises
at the borderline of areas and from the combination of ideas from different fields.
This is true for scientific advances in general, and also for the specific area of
mathematics, and also in a subfield. If you have a chance to talk to research
mathematicians, be it doctoral students or retired professors at the end of their
career: often they will tell you that the decisive idea for a proof or a theorem arose
from a chance encounter with someone with different background and perspective,
or from a presentation in a rather different field.

Consequence: we need to be experts in our specialty, but at the same time we
need to learn to understand mathematics outside of our direct area of research.
And we need to use the opportunities to communicate with others: excite them of
our specific subfield, and become excited by what they are doing.
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To foster this, we got together in a small hamlet in the hills south of Göttingen,
cutting ourselves even off some of the modern communication channels and used
the opportunity of intense interaction.

As part of this we set ourselves the goal that each of us would explain to a peer
his research, but then the non-expert would present this to the world.

The fruit of this you have in your hands: 15 short portraits of a research
program; where Alice is explaining us the research agenda of Bob, while Bob
describes what Alice is doing. Now the public is invited to read the outcome of
the effort and to get engaged in even more discussions. Have fun!

A snapshot of our RTG Group
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Reports

On the existence of
solutions for

Diophantine equations
Christian Bernert

Communicated by Léo Bénard

Christian works in the field of analytic number theory. Let (E) be a Diophantine
equation – that is, a polynomial equation involving a polynomial of finitely many
variables with integral coefficients, such as

17X3 + 23XY Z + 1013W 4 + 1 = 0.

Christian seeks to bound the minimal size of an integral solution of (E).
Motivation for this work comes from the following question, known as Hilbert’s

tenth problem:
Does there exist an algorithm to decide in finite time whether a

Diophantine equation has an integral solution or not?
This problem was answered negatively in 1970 by Matiyasevich, continuing pre-
vious work by Robinson, Davis and Putnam. This theorem has, however, not
discouraged the attempts to find such algorithms, at least for more restricted fam-
ilies of equations.

• Considering the simple case of a linear equation of two variables

(1.1) ax+ by = c

for integers a, b and c, it is not difficult to see that (1.1) has an integral
solution if and only if c is a multiple of the greatest common divisor of a
and b. It turns out that similar criteria exist for linear equations with any
number of variables.

• Although degree two is more involved, it is again possible to decide if a
given equation has a solution.

Theorem 1.2 (Local-global principle). A Diophantine equation of degree
two has a non-trivial integral solution if and only if it has non-trivial so-
lutions over R and modulo pk for all primes p, for all natural numbers k.

By non-trivial solution, we simply want to discard the case of a homo-
geneous polynomial having trivially the solution (0, . . . , 0).

Note that given such an equation (E), it suffices to check that it has a
non-trivial solution modulo pk for a finite number of primes powers. Hence
this theorem provides indeed a finite algorithm.

• In degree 3, the local-global principle no longer holds. The equation 3X3+
4Y 3 + 5Z3 = 0 is known to provide a counterexample.
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Take a (cubic) equation (E): C(x) = 0, with x = (x1, . . . , xn). Now the
Hardy–Littlewood circle method comes into play. It is a machinery that may give
an asymptotic formula for

NP (E) = #{x | C(x) = 0, |x|∞ ≤ P},

where P is a positive real number. When the machinery works, the asymptotic
term has the form

(1.3) NP (E) ∼ κPn−3 +O(Pn/2)

with some constant κ.
In the case of a cubic form (homogeneous degree 3 equation), this technique is

powerful enough to provide existence of non-trivial solutions as soon as the number
of variables exceeds 14, and this bound is expected to be optimal.

Assuming that (E) admits non-trivial solutions, Christian works in finding an
explicit bound P = P (E) such that NP (E) is effectively non-zero. Note that in
an algorithmic perspective, the existence of such a bound says that one can search
for integral solutions of (E) in a finite set.

Let M be the maximum of the coefficients involved in the equation (E). Chris-
tian showed that for a cubic form, if n ≥ 14, then P = M150000 is enough for
large M .

Less is known in the non-homogeneous case. Christian focuses on cubic equa-
tions (E) whose rank is big enough. The rank (or h-invariant) of an equation (E):
C(x) = 0 is the minimal number h such that C can be written as

C = L1Q1 + . . . LhQh

for Li at most linear, Qi at most quadratic.
Intuitively, the smaller this invariant is, the more degenerate is the equation.

For a generic cubic C, its rank equals the number of variables n. The important
feature is that if h is big enough, then the Hardy–Littlewood machinery works.

In a work in progress, Christian shows that for h ≥ 14, there exists a k such
that for P = Mk, the number NP (E) of solutions smaller that P is non-zero.

The idea of the proof is to control the error term in the asymptotic formula (1.3).
A control on the constant κ is given when solving the equation (E) modulo prime
powers, namely κ can be expressed as the product of the normalized numbers of
solutions mod pm and of real solutions. Those numbers are bounded, at least
in the case of a smooth cubic, by Deligne’s work on Weil’s conjectures. In the
singular case, more work is required, and this is the actual content of Christian’s
efforts.
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On representation
theory for Lie

algebroids
Geoffrey-Desmond Busche
Communicated by Jialong Deng

Several mathematicians working in Göttingen have made huge impact in the
development of Sophus Lie’s theory regarding the structures known as Lie algebras
and Lie groups today. For instance, the friendship of Felix Klein and Lie in their
younger years influenced each other’s mathematical ideas, the effect of Hilbert’s
fifth question and von Neumann’s result on on it, as well as Hermann Weyl’s
work on the representations of Lie algebras and Lie groups and his classic book
The Classical Groups, among many others. The research program regarding the
representation theory for Lie algebroids in the RTG 2491 will continue progressing
in Lie’s theory.

According to Weinstein, though groups are indeed sufficient to characterize
homogeneous structures, there are plenty of objects which exhibit what we clearly
recognize as symmetry, but which admit few or no nontrivial automorphisms. It
turns out that the symmetry, and hence much of the structure, of such objects can
be characterized algebraically if we use groupoids and not just groups. Groupoids
were first introduced (and named) by H. Brandt in 1926. Namely a groupoid is a
small category in which every morphism is an isomorphism, i.e. invertible. More
precisely:

Definition 2.1 (Groupoid). A groupoid G consists of two sets: a set of objects
G0 and a set of arrows G1 together with five structure maps s, t, u, i, c, namely

(1) the source and target maps s, t : G1 → G0 (in category theoretic terms,
domain and codomain of arrows),

(2) the unit inclusion u : G0 → G1, mapping an object to its identity mor-
phism,

(3) the composition of arrows c : G2 → G1, defined on the fibered product
G2 = G1s×tG1 = {(h, g) ∈ G1×G1 : s(h) = t(g)} and written c(h, g) = hg
(the set G2 is the set of pairs of composable arrows),

(4) the inversion of arrows i : G1 → G1, written i(g) = g−1,
which fulfil the following conditions:

(1) Compatibility of source and target with composition: For all (h, g) ∈ G2

we have s(hg) = s(g) and t(hg) = t(h).
(2) Associativity: For all k, h, g ∈ G1 such that s(k) = t(h) and s(h) = t(g)

we have (kh)g = k(hg) (note that these compositions make sense because
of property 1).

(3) Compatibility of the unit with source, target and composition in the sense
that
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(a) for all x ∈ G0 we have su(x) = x = tu(x) and
(b) for all g ∈ G1 we have [ut(g)]g = g = g[us(g)].

(4) Compatibilities of the inverse: For all g ∈ G1 we have s(g−1) = t(g) and
t(g−1) = s(g) as well as g−1g = us(g) and gg−1 = ut(g).

It is easy to see that any group is also a groupoid, giving the most basic exam-
ple. Furthermore, every set can be regarded as a groupoid that only has identity
morphisms. Literature contains many other examples.

Roughly, Lie groups are groups enriched with a smooth structure. Similarly, a
Lie groupoid is a groupoid combined with smooth structures.

Definition 2.2 (Lie groupoid). A Lie groupoid is a groupoid G for which, in
addition, G0 and G1 are smooth manifolds, and the structure maps s, t, u, i and
c are smooth. Furthermore, s and t : G1 → G0 are required to be submersions.

In category theoretic language, a Lie groupoid is a groupoid whose sets of
objects and of morphisms are both manifolds, whose source and target operations
are submersions, and in which all the category operations (source and target,
composition, and identity-assigning map) are smooth. Any Lie group gives a Lie
groupoid with one object, and conversely. So, the theory of Lie groupoids includes
the theory of Lie groups. Given any manifold M , there is a Lie groupoid called
the pair groupoid, with M as the manifold of objects, and precisely one morphism
from any object to any other. In this Lie groupoid the manifold of morphisms is
thus M ×M .

Definition 2.3 (Lie algebroid). A Lie algebroid is a vector bundle A → M to-
gether with a vector bundle morphism ρ : A → TM (called anchor map) and
a Lie bracket [−,−]. on the space of sections of A, satisfying the Leibniz rule
[X, fY ] = f [X,Y ]+ρ(X)(f)Y for all smooth sections X and Y of A, f ∈ C∞(M).
Here, ρ(X)(f) is the Lie derivative of f along the vector field ρ(X).

Every Lie algebra is a Lie algebroid over the one-point manifold. Every invo-
lutive subbundle of the tangent bundle — that is, one whose sections are closed
under the Lie bracket — also defines a Lie algebroid. The representation theory of
Lie algebras and Lie groups is a way to study Lie’s theory and plays an important
role in theoretic physics. Therefore, one can hope that the theory of Lie algebroid
and Lie groupoid representations has similarly meaningful physical applications.
Geoffrey-Desmond Busche is making progress in that direction.

Like the infinitesimal approximation to a Lie group is a Lie algebra, the in-
finitesimal approximation to a Lie groupoid is a Lie algebroid. So to every Lie
groupoid, a Lie algebroid is associated. Unfortunately, going back from a Lie al-
gebroid to a Lie groupoid is not always possible, but every Lie algebroid gives a so
called stacky Lie groupoid at least. Geoffrey-Desmond Busche’s goal is to differen-
tiate Lie groupoid representations to Lie algebroid representations and integrate
them back. The the exponential map (similar to the exponential map in Lie group
theory) will be used among other tools to connect both sides.
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Why you cannot have
bulges everywhere

Jialong Deng
Communicated by Geoffrey-Desmond

Busche

Looking at the world surrounding us, at things like an apple, a salad bowl or a
mug of coffee in our hands, we usually have an intuitive understanding of curva-
ture. We know how to distinguish convex from concave optical lenses and bulges
from dents. It is hence no wonder that curvature is a classical subject of mathe-
matics since the early days of modern research. Famous in many different areas,
Carl Friedrich Gauss studied curvature during the early 19th century and came up
with an innovative notion that was later named after him. The Gaussian curvature
describes a (two-dimensional) surface, embedded in Euclidean space, by approxi-
mating the intersections of the surface and a normal plane with a tangent circle.
Gauss’ work was both inspired by and used in the measurement of the kingdom of
Hanover and has since proven its practical value countless times. Purely mathe-
matical questions quickly arose as well. Gauss himself conjectured that his notion
of curvature was independent of the surrounding space and proved this to be true
in his Theorema egregium with much fewer tools than today’s mathematicians can
access.

From that point, a logical and fruitful generalization is to omit the space sur-
rounding the object of interest completely. Today, we do not restrict ourselves to
the investigation of two-dimensional embedded surfaces. Instead we can use the
theory of Riemannian manifolds (which means manifolds with a scalar product
on each tangent space, depending smoothly on the base point). Since the days of
Gauss, several different descriptions of curvature have been invented, each with
its respective appeals. Of particular interest to Jialong Deng is the scalar curva-
ture, which measures how the volume of a ball of given radius deviates from the
respective volume of a ball in Euclidean space of the same size. More concretely,
this works as follows.

Given a Riemannian manifold (M, g) of dimension m, we have an induced
volume form ω = dg ∈ Ωm(M), which in return yields a measure µ on M by
µ(U) =

∫
U
ω for open subsets U of M . In addition, there is the geodesic distance

function d : M ×M → R≥0, attaching to a pair of points the minimal length of a
straight line connecting them. Given a point p ∈M and a radius r ∈ R>0, we can
naturally define the ball of radius r around p as Bp(r) = {x ∈ M : d(p, x) < r}.
This ball has a volume volg(Bp(r)) = µ(Bp(r)) which depends smoothly on both
the point and the radius.

Anm-dimensional Euclidean ball of radius r has its usual volume volRm(B(r)) =
c(m) · rm, where c(m) ∈ R>0 is a constant depending only on m; for example,
c(2) = 2π and c(3) = 4π

3 . The scalar curvature sc(p) of (M, g) at the point p is
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then defined so that

volg(Bp(r)) = volRm(B(r)) ·
(

1− sc(p)

6(m+ 2)
r2 +O(r4)

)
for sufficiently small radii r. Differentiating with respect to r two times transforms
this to the following explicit equation:

sc(p) = −3(n+ 2)
d2

dr2

∣∣∣∣
r=0

volg(Bp(r))

volRm(B(r))

In dimension 2, the scalar curvature is just the double of the Gaussian curvature.
Hence it extends the classical theory to higher dimensions.

The scalar curvature depends on the chosen Riemannian metric, which is more
information than the topology and smooth structure of the manifold. It turns out,
however, that the topology alone creates constraints for the curvature functions
that may be realized by a Riemannian metric on it. Namely, there are smooth
manifolds which do not admit any Riemannian metric with positive scalar curva-
ture everywhere; in this sense, they cannot be bulged at every point. The simplest
example of this is the 2-dimensional torus S1 × S1.

The question which functions can be realized as the scalar curvature of some
metric on a given manifold is known as the prescribed curvature problem. Kazdan
and Warner have progressed in this area by proving a theorem (see [1], Theorem
4.35) that separates smooth manifolds of dimension three or higher into three
classes: On manifolds of the first class, every smooth function can be realized as
scalar curvature. The second class admits curvatures which are constantly zero
or negative at some point, and the third one only allows curvatures which are
negative somewhere. By this theorem, finding manifolds which admit a positive
scalar curvature becomes equal to finding the manifolds where every curvature
function can be realized.

This task is currently pursued by Jialong Deng. He progresses using the theory
of minimal surfaces and index theory, including the K-theory of C∗-algebras.

Just as in the days of Gauss, the investigation of curvature still has practical
applications today. While harder to grasp with our intuition than the surface of
the earth, the Einstein field equation is a tool used by physicists to describe our
universe in general relativity. One important term in this equation is the scalar
curvature of space time. Chances are high that future researchers will continue to
use the theory of scalar curvature for a long time.

References

[1] Arthur L. Besse, Einstein Manifolds. 1987.
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Topological T -duality
Tom Dove

Communicated by Eske Ewert

It is a constant goal of physics to develop models of the universe that accurately
describe our world. In particular, physicists are looking for a unified theory that
explains all four fundamental forces: gravity, electromagnetism and the strong and
weak forces. String theory is a candidate for such a theory. Within string theory
there is a relationship between space-time models called T -duality. If two models
are T -dual to each other, they are physically equivalent, even if they appear to be
very different. Tom is studying topological T -duality, which describes the topology
that underlies this relationship.

In its topological formulation, a physical model is described by a pair (E, h)
over a space B, consisting of a principal Tn-bundle E → B together with a twist h
which represents a cohomology class in H3(E;Z). This twist is called the H-flux
and can take the form of, for example, a gerbe or a closed differential 3-form.

A gerbe is an object that geometrically represents a class in H3(E;Z) in the
same way line bundles represent classes in H2(E;Z). For the latter, taking the
first Chern class of a line bundle allows to identify the isomorphism classes of line
bundles with H2(E;Z). Similarly, H3(E;Z) can be understood as isomorphism
classes of gerbes.

Given two pairs (E, h) and (Ê, ĥ) over B, one can form the fibre product E×BÊ.
Loosely speaking, the T -dual relation is an isomorphism between the H-fluxes h
and ĥ when pulled back to the fibre product. In addition, this isomorphism must
satisfy a Poincaré bundle condition.

The simplest cases are principal T1-bundles. In this situation, it turns out that
the T -dual of a given pair (E, h) is the bundle whose Chern class is the pushforward
of [h] along the projection E → B. The dual H-flux is chosen in such a way that
the relation is symmetric. In particular, every pair has a T -dual which is unique
up to isomorphism.

However, for Tn-bundles with n ≥ 2 not every pair admits a T -dual and the
T -dual need not be unique.

An important aspect of T -duality is that it induces isomorphisms in certain
twisted cohomology theories. These isomorphisms are in fact predicted by physi-
cists. For a smooth manifoldM and a closed 3-form ω twisted de Rham cohomology
is constructed as follows. The de Rham differential d is twisted by adding ω to it:
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dω = d + ω. Denote the resulting 2-periodic cohomology groups by H•(M,ω). If
(E, h) and (Ê, ĥ) are T -dual to each other, there is an isomorphism in twisted de
Rham cohomology with a degree shift: H•(E, h) ∼= H•+1(Ê, ĥ).

Another example is twisted K-theory. The H-flux h yields a class in H3(E;Z),
which is isomorphic to H2(E;T1). If the class of h is torsion, this viewpoint
can be used to define twisted vector bundles over E. An ordinary k-dimensional
vector bundle is determined by its transition functions ϕij : Ui ∩ Uj → Gl(k)
between local trivializations. The transition functions satisfy a cocycle condition.
One can construct twisted vector bundles by replacing the cocycle condition with
ϕijϕjk = ϕikhijk for a torsion class [h] ∈ H2(E;T1). Building on these twisted
vector bundles, the twisted K-group K0(E, h) is defined. T -duality again induces
isomorphisms between the respective twisted K-groups with a degree shift.

Tom will look into the question of what can be said in more singular physical
situations. These can be modelled by torus actions that are no longer free. So far,
there have been several approaches to this in the case of non-free circle actions.
Tom will compare these to find the right axiomatic definition of pairs and T -duality
in this context. Furthermore, he will investigate under which criteria the T -dual
exists and when it is unique. A related question is how many T -duals a given pair
has.

After this, Tom will construct the isomorphisms between twisted cohomology
groups that arise from the T -duality relation in this broader framework. A further
direction will be to understand in a systematic way which twisted cohomology
theories admit T -duality isomorphisms.

References
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Filtered manifolds and
non-elliptic operators

Eske Ewert
Communicated by Tom Dove

Fredholm operators are operators whose kernel and cokernel are of finite dimen-
sion. Named in honour of Erik Ivar Fredholm, these operators were first used to
study integral equations, and have been widely thought about since. An impor-
tant class of Fredholm operators are elliptic operators on compact manifolds; these
are the subject of the famous Atiyah-Singer Index Theorem, which demonstrates
a powerful connection between analysis and topology by proving that the ana-
lytic index and topological index of an elliptic operator are equal. However, there
are operators that are Fredholm, but not elliptic. In Eske Ewert’s recently com-
pleted PhD thesis, Index theory and groupoids for filtered manifolds, she develops
a mathematical framework to study such operators.

How does one test for ellipticity in the classical setting? Consider a differential
operator P on Rn. This has the form

P =
∑
|α|≤m

cα∂
α,

for a collection of smooth functions cα : Rn → C. To check if this is an elliptic
operator, one considers the highest order part,

σ(P ) =
∑
|α|=m

cα∂
α.

For a fixed x ∈ Rn, this is a constant coefficient operator on Rn. Then one applies
the Fourier transform to obtain the principal symbol of P ,

p(x, ξ) =
∑
|α|=m

cα(x)(−iξ)α.

If the principal symbol is invertible for all x, then P is elliptic.
Now for a non-elliptic Fredholm operator. Consider the 3-dimensional Heisen-

berg group, whose Lie algebra is generated by X,Y, Z satisfying [X,Y ] = Z and
[X,Z] = [Y,Z] = 0. The operator

−X2 − Y 2 + iµZ, µ ∈ C \ 2Z + 1,

on a quotient of the Heisenberg group by an integer lattice is Fredholm and non-
elliptic. This is because Z is not present in the highest order part of the operator
and thus is not in the principal symbol either. A remedy for this is to assign new
orders to the variables: one asserts that X and Y will now have order 1 and Z will
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now have order 2. Then Z belongs to the highest order part, and we get a different
principal symbol. To make the idea of assigning different orders to vector fields
precise, Eske considers filtered manifolds, an idea which goes back to the 1970s
and has recently been used in noncommutative geometry. A filtered manifold
is a smooth manifold paired with a filtration of its tangent bundle by smooth
subbundles, and satisfying a certain “integrability” condition for its sections. The
assigning of orders to vector fields then corresponds to which subbundles the vector
fields belong to.

When working in the framework of filtered manifolds, the highest order part
of an operator is interpreted as a right-invariant differential operator on some
nilpotent Lie group coming from the filtration of the filtered manifold. In the
classical setting above, the highest order part is an operator on Rn and so one
can comfortably make use of the Fourier transform. On a filtered manifold, the
Fourier transform is replaced by a study of the irreducible representations of the
underlying Lie group. The notion that certain operators can be better understood
when having their highest order part acting on nilpotent Lie groups goes back to
the work of Folland, Rothschild and Stein in the 1970s, and has since been used
several times in the study of pseudo-differential operators.

With a new notion of order, one can then investigate new notions of principal
bundles and ellipticity. In the smooth manifold setting, there is an approach
to pseudo-differential operators using the tangent groupoid. This groupoid was
defined by Alain Connes and used in his proof of the Atiyah-Singer Index Theorem.
For a manifold M , the tangent groupoid is the groupoid with arrows

TM × {0} ∪ (M ×M)× (0,∞).

For filtered manifolds, one also has a tangent groupoid; in this case the tangent
bundle is replaced by a bundle of Lie groups (precisely those being acted on by the
highest order part). From here one obtains a noncommutative algebra of symbols,
which is the target of a principal symbol map from the space of compact operators.
Then, one simply defines an operator to be elliptic if its symbol is invertible in
this algebra.

In her thesis, Eske uses filtered manifolds and their groupoids as a framework for
studying non-elliptic Fredholm operators. This approach allows Eske to ascertain
a number of their properties and head towards an index theory for non-elliptic
operators. In her future work, Eske hopes to use these methods to define and
investigate new pseudo-differential calculi.
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In search for ideals in
the world of Lie

algebroids
Rosa Marchesini

Communicated by Jérémy Mougel

In this article, we will follow a scientist in his quest to find ideals. This quest
takes place in the fabulous world of Lie algebroids. A Lie algebroid is a triple
(A, [·, ·], ρ) consisting of a vector bundle A→M over a smooth manifold M . This
vector bundle is equipped with a Lie bracket [·, ·] on Γ(A), the space of section
of A. The vector bundle A is attached to TM , the tangent bundle of M via the
bundle morphism ρ. The vector bundle is so well attached that ρ is usually called
the anchor map. The anchor map ρ and the Lie bracket have to be compatible:
Together ρ and [·, · satisfy the Leibniz rule. For our readers who are not familiar
with this Lie algebroid world, we recall that each Lie algebra L is a Lie algebroid.
The bracket is the bracket coming from the Lie algebra structure and ρ is the null
map that sends L→ {0} = TM ( here M is a point).

For a Lie algebroid (A→M, [·, ·], ρ), a naïve idea of ideal could be a subbundle
I ⊂ A such that [Γ(I),Γ(A)] ⊂ Γ(I). If we look at the image of I by the anchor
made, we get something fade, irrelevant, tasteless, without personality; in a word
something trivial ! (for those who like formulas, we obtain: ρ(I) = 0 or I = A).

This is where our scientist’s work begins. The purpose is to find an alternative
definition of ideals such that the image by the anchor map is not trivial. As
in any history (or research work), our main character (or scientist) is not alone:
in [2], the authors introduce the notion of infinitesimal ideal system. The idea
behind infinitesimal ideal systems is the following. We go from a Lie group to
a Lie algebra using the infinitesimal calculus and we can transpose this process
from a Lie groupoid to a Lie algebroid. Starting from a Lie group G, we use the
product of G to define a bracket m on its Lie algebra g. Then a candidate for an
ideal subbundle is K ⊂ g with m(K, g) ⊂ K. They do the the same constructions
and see what happens for a Lie groupoid and its Lie algebroid. This leads to the
definition of an infinitesimal ideal system.

An infinitesimal ideal system is a triple (FM , J,∇) where F ⊂ TM is an in-
volutive subbundle and J ⊂ A is a subalgebroid such that ρ(J) ⊂ FM and
∇ : Γ(FM ) × Γ(A/J) → Γ(A/J) is a flat connection on the quotient algebroid
A/J . A section a ∈ Γ(A) is said to be ∇-parallel if, for all X ∈ Γ(FM ), we have
∇X ã = 0, where ã is the class of a in Γ(A/J). To have an infinitesimal ideal
system, we require the following properties on ∇-parallel sections:

(1) For every ∇-parallel section a, we have [a, j] ∈ Γ(J) for all j ∈ Γ(J).
(2) The set of ∇-parallel sections is stable by the Lie bracket.

With this new definition of ideals, our scientist can travel around the world of
the Lie algebroids to find them. The definition is very abstract and not easy
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to check. That is why the main work of our scientist is to develop a tool to
recognize infinitesimal ideal systems. Mathematically speaking, our scientist seek
a necessary condition for infinitesimal ideal systems.

We will give a few details on this necessary condition. For explicit details on
the following construction, we refer to [1]. Giving an infinitesimal ideal system
(FM , J,∇), we can extend ∇ to obtain a new connection ∇̃ : Γ(TM) × Γ(A) →
Γ(A). Let D be the so called adjunct representation of ∇̃, which is a flat connection
of A with values in A ⊕ TM . Using properties of infinitesimal ideal systems, we
can show that D splits in two other flat connections. The first one, D1, is defined
by restriction and goes from A to J ⊕ FM . The second one, D2, goes from A to
A/J ⊕ TM/FM .

Each flat connection π has a Chern–Simons form cs(π, πg). The goal is to see
study relations between cs(D,Dg) and cs(D1,Dg1) and cs(D2,Dg2). This should
lead to necessary conditions for infinitesimal ideal systems.
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Finding regularity for
bound states in the

N-body problem
Jérémy Mougel

Communicated by Rosa Marchesini

There are structures which are recurrent in nature, laws describing interactions
between infinitesimal small particles which also apply to the largest bodies we
know to exist. Then we have common models, and of course common problems.
The N -body problem is one of these. In most of its mathematical descriptions one
mass is supposed to be the centre, the (0, 0, 0) coordinate in the space R3. This
can be for instance the kernel of an atom or the Sun in our Solar System. We
should consider also other secondary bodies. In our examples, these are electrons
and planets, respectively, which also have a position; let us say these are xi ∈ R3,
for each i = 1, . . . , N . Since the central mass is fixed, we can describe the space
configuration of the system by x = (x1, . . . , xN ) ∈ R3N . Physicists know that there
are a lot of interactions which must be carefully summed up to describe the final
behaviour of the system. The complexity and the quantity of problems involved
imposes a choice. This is of course restrictive, but specializing is the key: the more
we know about the single interactions, the more we know about the whole system.



Conclave meeting of the RTG 2491 “Fourier Analysis and Spectral Theory” 17

We focus on the total energy of the system, which is relevant because it is
time-invariant. It is usually described in quantum mechanics by the so called
Schrödinger Hamiltonian, which can be expressed as the sum of operators corre-
sponding to the kinetic energy and the potential energy of the particles involved:

(7.1) H := −∆ + V.

In the model we consider, the potential has the form

V (x) =
∑

1≤i≤N

bi
|xi|

+
∑

1≤i<j≤N

cij
|xi − xj |

where x = (x1, . . . , xN ) ∈ R3N as previously, xi ∈ R3, and bi and cij are suitable
constants. H acts on L2(R3N ) with V as operator of multiplication.

Our main goal is to find results on the regularity of the eigenfunctions of H,
that is, of u ∈ L2(R3N ) such that

Hu := −∆u+ V u = λu

for some λ ∈ R. These special functions are also called bound states, due to
their physical meaning: a particle in such a state cannot leave the system without
additional energy.

What is the path we want to follow? The starting point is to define a manifold
with good structures at infinity (a so called Lie manifold), starting from the mani-
fold X := Rn, with n := 3N , of all possible configurations of the system. We begin
by applying the spherical compactification to X, which means adding a point at
infinity for each half-line in Rn starting at the origin. In other words, we add a
sphere SX := Sn−1 of points at infinity. Let

Yk := {x ∈ R3N : xk = 0 ∈ R3} ⊂ R3N , Zij := {x ∈ R3N) : xi = xj ∈ R3}

The potential V is singular on the subspace

S :=
⋃
k

Yk ∪
⋃
i<j

Zij .

As usual, it is easier to work without singularities. We can avoid them by
blowing X up along the submanifolds Yk and Zij for all i, j, k with i < j (see [1]).
Roughly speaking, a new manifold [X : S] is obtained by removing all the Yk
and Zij from X and, for each of these, gluing back the unit sphere bundle of
their normal bundle in X. Actually, this is not sufficient for our purpose. We
blow X up also along additional submanifolds of X, defined starting from the
Yk and the Zij . The resulting manifold [X : S′] turns out to be what we are
looking for: the natural action of X by translations on X induces an action of X
on [X : S′], which endows the blown-up manifold with a so-called Lie structure at
infinity. Under this structure, we can define Diff([X : S′]), an algebra of differential
operators on [X : S′], where we can find an operator which is similar to (7.1) and
has nice properties.
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The second step is to extend and adapt a result in [1] to our case, which allows
us to pass from operators in Lie manifolds to weighted Sobolev spaces, defined as

Kma (Rl) := {u : Rl → C : r
|α|−a
S ∂αu ∈ L2(Rl), |α| ≤ m},

where a ∈ R, m ∈ N, and the weight rS(x) is a smoothed distance from x to S.
We aim to prove the following claim under some condition on a ∈ R and m ∈ N
yet to be determined:

u ∈ Kma (R3(N−1))
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On the Numbers of
Solutions of Systems of

Homogeneous Forms
Leonhard Felix René Hochfilzer

Communicated by Thorsten Hertl

Since ancient times mathematicians have been interested in Pythagorean triples
- even for practical purposes. Recall that a Pythagorean triple is a triple of integers
(a, b, c) that satisfy a2 + b2 = c2, or equivalently, a solution of the homogeneous
quadratic form

a2 + b2 − c2 = 0.

An easy example is (2, 3, 5). But are there more? And how do we answer this
question? If we put the trivial example (0, 0, 0) aside we can divide the equation
by c2 and obtain the equation p2 + q2 = 1 over the rational numbers. In other
words, we are looking for all rational points (p, q) on the unit circle. There are
infinitely many points, which can be seen by the following argument: Let (0, t)
denotes the intersection of the ordinate with the line joining (−1, 0) and (p, q).
Then t = q/(p + 1) is a rational number and the hypothetical point (p, q) can be
completely described by t via

(p, q) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

Interpreting this formula the other way around, each rational t provides a rational
point on the unit sphere and therefore a Pythagorean triple. Thus, there are
infinitely many of them.
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Nowadays, mathematicians do not restrict themselves to Pythagorean triples
but want to understand the solution of (a system of) homogeneous forms. The
general set up is the following: We are given R homogeneous polynomials F =
(F1, . . . , FR) in n variables x = (x1, . . . , xn) with coefficients in Z. Since the theory
becomes more accessible if all forms have the same degree d, we assume this, too.
Unlike for Pythagorean triples, the problem is too complicated to expect a general
recipe to describe all solutions. The next best thing is to estimate how many
solutions there are under a given bound B. Formally speaking, we try to estimate

N(B) := ]{x ∈ [−B,B]n ∩ Zn : F(x) = 0}
as well as possible. Heuristically, we expect N(B) to grow as fast as Bn−dR,
that is, N(B)/Bn−dR is bounded from above and below by positive constants.
Indeed, if we consider F as a polynomial in n+ 1 variables (which is independent
of the added variable) then we have produced 2B-times many solutions more. To
understand the dependence in R, it is best to work with forms of degree 1. Adding
another form is like restricting the solutions to a hyperplane, which reduces the
dimension by one. Lastly, it is harder to produce small numbers with high degree
polynomials, so we expect B−d many solutions.

A common theme to attack this problem is to look for solutions in the fields Qp
of p-adic numbers and in R, and hope that such solutions lifts to solutions over
the integers. If this works for all possible solutions, then we say that the system F
satisfies the local-to-global principle or Hasse principle. Unfortunately, not every
system F satisfies it. However, Birch [3] could show that good homogeneous
systems support the heuristic and satisfy the Hasse principle:

Theorem 8.1. Let V = V (F) be the zero set of F and let V ∗ be set of all points,
where the differential of F has no full rank. Assume that V is n−R dimensional
and is a complete intersection, that is, the intersection of exactly R hyperplanes.
If

(8.2) n− dimV ∗ > 2d−1(d− 1)R(R+ 1),

then

(8.3) N(B) = ISBn−dR(1 + o(1)).

If, in addition, V has a non-singular point over R, then I > 0; if V has a non-
singular point over Qp for all primes p, then S > 0.

The proof relies on the circle method, a technique widely used in analytic number
theory. It is based on the observation that∫ 1

0

exp(2πikt)dt =

{
1, k = 0,

0, k 6= 0.

This observation allows us to express N(B) as an integral. If we write e(x) for
exp(2πix) and set

S(α) :=
∑

x∈[−B,B]n∩Zn

e(〈α,F〉),
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then Fubini’s theorem implies∫
[0,1]R

S(α) dα =
∑

x∈[−B,B]n∩Zn

∫
[0,1]R

e(〈α,F〉) dα

=
∑

x∈[−B,B]n∩Zn

∫ 1

0

· · ·
∫ 1

0

n∏
j=1

e(αjFj(x)) dα1 . . . dαn

= N(B).

An involved analysis of the integral shows that the main contributions to the
integral come from those α ∈ [0, 1]R that are close to rational points. All other
points interfere with each other and roughly sum up to 0. More quantitatively,
the major arcs of control-value ∆ - to be determined later - is defined by

M(∆) :=
⋃

1≤q≤B∆

⋃
a mod q

(a,q)=1

{α ∈ [0, 1]R : 2||qα− a||π < B−d+∆},

where ||x||π = mink∈Zn |x − k|. The complement is called the minor arcs and is
denoted by m(∆). One can show∫

M(∆)

S(α) dα = ISBn−dR +O(Bn−dR),∫
m(∆)

S(α) dα = o(Bn−dR−δ).

This yields the claimed estimate for N(B).
Recently, Myerson achieved a major breakthrough in [1]: He could replace

Birch’s quadratic lower bound by a linear one. The precise statement is as follows:

Theorem 8.4. Let F be a generic system of length R of polynomials of degree d
in n variables. Assume n > (d2d + 1)R. Then

N(B) = ISBn−dR(1 + o(1)).

In addition, if V has a non-singular point over R, then I > 0; if V has a non-
singular point over Qp for all primes p, then S > 0.

Around the same time, Schindler tackled the problem from a different angle. A
homogeneous polynomial F (x, y) with x = (x1, . . . , xn1

) and y = (y1, . . . , yn2
) is

called bihomogeneous if it satisfies F (λx, µy) = λd1µd2F (x, y). The bihomogenity
allows us to ask the more refined question how

N(B1, B2) := ]{(x, y) ∈ ([−B1, B1]× [−B2, B2]) ∩ Zn1+n2 : F (x, y) = 0}
asymptotically grows. One expects a Birch-style result for this set-up and this
is indeed true. Schindler [2] proved such a theorem which reads (simplified) as
follows:

Theorem 8.5. Let V ∗1 be the singular locus for F in x direction and V ∗2 let be the
singular locus in y direction. Assume they satisfy

n1 + n2 − dimV ∗i > Q(R),
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where Q(R) is a specifically chosen quadratic polynomial. Then

N(B1, B2) = SIBn1−d1RBn2−d2R(1 + o(1))

and a version of the Hasse principle holds.

Now the question arises whether one can replace the quadratic lower bound by
a linear one. This is precisely one of Leonhard’s PhD projects. Although he just
started in August this year he already obtained a result for bilinear forms, the
(d1, d2) = (1, 1) case. The next step - bidegree = (2, 1) - requires more combina-
torics, but we are sure that this case as well as the general case will be proven.
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New techniques for the
study of singular

foliations
Leonid Ryvkin

Communicated by Fabrizio Zanello

Regular and Singular Foliations. Leonid’s work is concerned with the study
of the topological and algebraic properties of singular foliations. Before describing
some of the advanced mathematical tools involved in his research, it is instructive
to retrace the path to the correct definition of what a foliation is. The most
intuitive definition of a regular foliation is probably the following:

Definition 9.1. Given a manifold M of dimension n, a regular foliation is a
decomposition of M into submanifolds M =

⊔
α∈Λ Lα, where Λ is some index set,

such that in local coordinates the submanifolds are diffeomeorphic to Rk × {α} ⊂
Rn.

But soon there appeared some particular situations allowed by this definition
which are not well suited for the purposes of Leonid’s subsequent work. An exam-
ple is the following decomposition of R2:

R2 = {x = 0}
⊔(⊔

α∈R
{(x, α) : x 6= 0}

)
.

The problem in this case is that the leaf {x = 0} is transverse to the other leaves
{(x, α) : x 6= 0}. In order to avoid such foliations, a stricter definition has been
introduced:



22 Conclave meeting of the RTG 2491 “Fourier Analysis and Spectral Theory”

Definition 9.2. A regular foliation is a subbundle V ⊆ TM which is also in-
volutive; in other words, if we denote by Γ(V ) the space of sections of V , then
[Γ(V ),Γ(V )] ⊂ Γ(V ).

Since it will be relevant for the approach to singular foliations, we also state
another equivalent definition with a more algebraic taste:

Definition 9.3. A regular foliation F is a subset of the space of vector fields
F ⊂ X(M) such that

• [F,F] ⊂ F;
• F has constant rank, that is, the vector spaces Fx = F

⋂
TxM , x ∈ M ,

have constant dimension;
• F is a C∞(M)-submodule of X(M).

Now we are ready to define singular foliations, which generalize regular folia-
tions. First, we may weaken our first definition of a regular foliation:

Definition 9.4. A singular foliation is a decomposition M =
⊔
α Lα where the

leaves Lα may have different dimensions.

This definition has to be discarded immediately because it also allows the un-
suitable example mentioned above. A condition that should be added is exten-
sibility : we ask that for every tangent vector v ∈ TxLα there is a local vector
field X (that is, a vector field which is defined in a neighbourhood of x) such that
X|x = v.

If Leonid had to work in a purely geometrical setting this would be enough.
This further requirement is, however, still not enough for the algebraic structures
that he is interested in. The solution is to modify Definition 9.3 in the following
way. It is understood that involutivity is something that we really cannot give
up. So we drop the assumption about the constancy of the rank and keep only
the hypothesis that F is a C∞(M)-submodule of X(M); then we add the algebraic
requirement that F has to be finitely generated as a C∞(M)-module.

To summarize the geometric and algebraic approaches, we have the following
table:

regular foliations singular foliations

geometric V ⊆ TM involutive subbundle M =
⊔
α Lα with embedded sub-

manifolds, possibly with differ-
ent dimensions, every v ∈ TxLα
has a local extension.

algebraic F ⊂ X(M) involutive C∞(M)-
submodule with constant rank

F ⊂ X(M) involutive, finitely
generated C∞(M)-submodule.

The geometric and the algebraic definitions for regular foliations are equivalent by
the Frobenius Theorem. In contrast, for singular foliations, the algebraic definition
is only a special case of the less restrictive geometric one.
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The Lie ∞-Algebroid Structure. Starting from the fact that an admissible
foliation has to be finitely generated, it is possible to define a sequence of vector
bundles.

Suppose that a foliation F admitsN vector fields as generators. Let us introduce
the vector bundle E−1 := RN ×M → M . Then, fixing a system of generators
{v1, . . . , vN} of the foliation F, we get a map r : Γ(E−1) −→ F. In general, this
map need not be injective. Then Ker(r) 6= {0}. Assume that this module is, in
turn, finitely generated by, say, k elements. Then, as above, we get a vector bundle
E−2 := Rk ×M →M and a map Γ(E−2)→ Γ(E−1) whose image is Ker(r). This
lifts to a vector bundle map E−2 → E−1. Repeating this construction, we get a
long exact sequence

· · · → Γ(E−n)→ · · · → Γ(E−2)→ Γ(E−1)→ F.

This is a projective resolution of F. In general, Ker(r) and the kernels of the other
maps in the construction just mentioned need not to be finitely generated, even
if F is. Nevertheless, this is the case in all the situations considered in Leonid’s
research work, and so the procedure above works.

On each space of sections of each vector bundle there is a bracket (due to the
involutivity requirement for the admissible foliations), which implements on the
sequence, considered as a single object, the structure of Lie ∞-algebroid. This is
a weaker and more general version of the structure of Lie algebra. Lie algebroids
are Lie ∞-algebroids where the sequence above is reduced to a single non-trivial
map · · · → 0 → Γ(E−1) → F. The Lie ∞-algebroid associated to a foliation is
called the universal Lie ∞-algebroid of the foliation.

Results and Outlook. One of the main results states that this construction
is natural, in the sense that properly defined invariants of the universal Lie ∞-
algebroid of a foliation are invariants of the foliation itself. Moreover, the for-
mulation of this theory in the framework of Lie ∞-algebroids allowed to recover
fundamental results about Lie algebroids and singular foliations.

One of the strong points of the theory is the possibility to use the invariants
defined through the universal Lie ∞-algebroid to distinguish different foliations of
the same space. This technique leads to many questions, which Leonid and his
collaborators will try to answer, such as the following.

• When can the universal Lie ∞-algebroid of a foliation be generated by
a Lie algebroid? In other words, when is the projective resolution of F
reduced to a single map B→ F?

• How deep are the topological and the algebraic aspects and how far can
we separate and control their contributions to the invariants of a foliation?
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Field theories
associated to the

Sine-Gordon equation
Fabrizio Zanello

Communicated by Leonid Ryvkin

Introduction: The Sine-Gordon equation. Fabrizio’s research centers on the
famous Sine-Gordon equation. It is a partial differential equation for real-valued
functions in two variables ϕ = ϕ(t, x), spelling out as follows:

(10.1)
∂

∂t

∂

∂t
ϕ− ∂

∂x

∂

∂x
ϕ+ sin(ϕ) = 0.

This equation appears naturally in the theory of negatively curved Riemannian
surfaces and has several notable properties:

• There is a systematic procedure to generate a series of new solutions from
an old one. In particular, there are many solutions.

• There are infinitely many conserved quantities, that is, “invariants” of so-
lutions.

• The equation admits soliton solutions. If we interpret t as time and x
as a spacial direction, then we can find solutions with “one isolated wave
moving in space as time passes”.

These three properties (many solutions, many invariants, interesting solutions)
make it an interesting PDE to study.

Phasing PDEs physically: Field Theory. One possible way to interpret the
Sine-Gordon equation is as a Lagrangian classical field theory. The basic setup of
such a field theory is given by

• a spacetime M ;
• a space of fields C;
• a Lagrangian L.

In our case, the spacetime is M = R2, interpreted as a 2-dimensional version of
spacetime with one space direction x and one time direction t. Typically, a field
ϕ ∈ C associates a physical quantity ϕ(t, x) to any point (t, x) in spacetime. In
general, a field may be valued in any space (of vectors, tensors, group elements)
or even a fibration of spaces over M . In our case, it simply takes real values.
For this reason the Sine-Gordon equation (or model) is also called a scalar field
theory. For a scalar classical field theory describing a second-order PDE (like the
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Sine-Gordon-Equation), L depends on the spacetime coordinates (t, x), the field
value ϕ and its first derivatives (ϕt, ϕx). In our case

L(t, x, ϕ, ϕt, ϕx) :=
1

2
(ϕ2
t − ϕ2

x) + (1− cos(ϕ)).

As the Lagrangian only depends on zero and first order derivative coordinates, the
Sine-Gordon model is a first-order classical field theory.

The idea of the Lagrangian, is to translate a PDE into a minimization prob-
lem. For instance, up to convergence problems, the solutions of the Sine-Gordon
equation (10.1) are equivalent to the extremities (for instance, local minima) of
the functional

ϕ 7→
∫
L
(
t, x, ϕ(t, x),

∂ϕ

∂t
(t, x),

∂ϕ

∂x
(t, x)

)
dtdx.

Algebraic Approach: Constructing Quantisations. The Lagrangian L de-
fines a Lie bracket {·, ·} on (an appropriate subspace of) the smooth functionals
F ⊂ C∞(C,C) on the field space C. A functional F ∈ F maps a field ϕ to a
number F (ϕ). Together with the pointwise (commutative) multiplication of func-
tionals, the Lie bracket {·, ·} turns F into a Poisson algebra.

Roughly speaking, the idea of quantization is that the classical field theory or
PDE (10.1), described through the Poisson algebra F , is the “large-scale behaviour”
of our system, that is, the result of some parameter approaching zero. From this
perspective, F is just the shadow or classical limit of a richer structure on F [[~]],
the space of formal power series with coefficients in F in the formal variable ~, to be
interpreted as the Planck constant (a very small number). From this perspective,
the quest for a quantization of the Sine-Gordon equation translates to finding a
product structure ∗~ : F [[~]]×F [[~]]→ F [[~]], which satisfies the following:

• the zero-order part of ∗~ recovers the point-wise multiplication on F , that
is,

lim
~→0

F ∗~ G = F ·G;

• the first-order part of the commutator of ∗~ recovers the Lie bracket of F ,
that is,

lim
~→0

F ∗~ G−G ∗~ F
~

=
√
−1{F,G}.

Introducing interactions. The Sine-Gordon equation may be done solved by
a perturbative approach, as it is closely related to the similar but simpler Klein-
Gordon equation:

∂

∂t

∂

∂t
ϕ− ∂

∂x

∂

∂x
ϕ+ ϕ = 0.

We interpolate between these equations and their Lagrangian by a parameter κ:

Lκ(t, x, ϕ, ϕt, ϕx) :=
1

2
(ϕ2
t − ϕ2

x) + (1− κ)
1

2
ϕ2 − κ(cos(ϕ) + 1).

For κ = 0, we get the Klein-Gordon equation, which is called the free theory. For
κ = 1, we get the Sine-Gordon equation, the so-called theory with interaction. This
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interpolation yields a Poisson algebra F [[κ]], which relates the functional algebras
of the Klein–Gordon and the Sine-Gordon equation.

Perturbative algebraic quantum field theory. Fabrizio’s research aims at un-
derstanding how the quantization and the perturbation procedures can be carried
out consecutively, yielding a product on the space F [[κ, ~]]. While for quantization
followed by perturbation, there are some results, the converse direction of “how to
quantize the perturbed theory” is completely open.

unperturbed classical theory F //

��

perturbed classical theory F [[κ]]

?

��

unperturbed quantum theory F [[~]] // perturbed quantum theory F [[~, κ]]
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A very complicated
L2-invariant
Thorsten Hertl

Communicated by Leonhard Hochfilzer

Let (M, g) be a smooth Riemannian manifold of dimension d. There are sev-
eral ways to define the curvature of a Riemannian manifold. Three important
definitions of the curvature are the Riemann curvature tensor, the Ricci curvature
tensor and the scalar curvature. When d = 2, these notions coincide in the sense
that knowing one of the three allows to compute the other two. While this is no
longer the case for d > 2, one may still deduce the Ricci tensor from the Riemann
tensor, and the scalar curvature from the Ricci tensor.

The main object of interest for us here is the scalar curvature. As a first
definition, the scalar curvature is usually defined to be the trace of the Ricci
curvature tensor. However, there is also a direct definition that does not require
us to compute the Ricci tensor first. Recall that a Riemannian metric g induces a
metric dg on our manifold M . We define the open ball of radius r in M to be

Br(p) := {q ∈M : dg(p, q) < r}.
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Definition 11.1. Let (M, g) be a smooth Riemannian manifold of dimension d.
We define the scalar curvature of (M, g) at a point p ∈ M to be the real number
scalg(p) such that the following holds

vol(Bε(p) ⊆M)

vol(Bε(0) ⊆ Rn)
= 1− scalg(p)

6(d+ 2)
ε2 +O(ε4).

Thus the scalar curvature measures the asymptotic growth of geodesic balls
compared to the growth of balls in Euclidean space. In the case d = 2 the scalar
curvature is 2κ, where κ is the Gauss curvature.

Example 11.2. Consider the unit ball M = S2
1 = {(x, y, z) ∈ R3 : x2 + y2 + z2 =

1} of dimension 2 with its usual metric. Let a ∈ M . It is not hard to show
that vol(Bε(a) ⊆ M) = 2π(1 − cos ε). The Taylor expansion of cos ε implies
vol(Bε(a) ⊆ M) = πε2 − π

12ε
4 + O(ε6). Recalling that the area of a disc with

radius ε is πε2 we see that scalg(a) is positive in this case (as we hope it would
be). In fact, we find scalg = 2.

We say that a metric g has positive scalar curvature if scalg(a) > 0 for all
a ∈ M . The following theorem by Kazdan and Warner motivates the study of
positive scalar metrics.

Theorem 11.3 (Kazdan, Warner, 1975). Let M be a closed smooth manifold of
degree d ≥ 3. Assume that there is a positive scalar curvature metric on M . Then
for all f ∈ C∞(M) there is a metric gf such that f = scalgf .

If d = 2 then the Gauss–Bonnet Theorem can help us study whether a surfaceM
admits a positive scalar metric. Recall that scalg = 2κg, where κg is the Gauss
curvature. The Gauss–Bonnet Theorem may thus be stated as the equation∫

M

scalg d(volg) = 4πχ(M),

where χ(M) denotes the Euler characteristic of M . Any surface homeomorphic
to a torus has Euler characteristic χ(M) = 0. Therefore, such a manifold has no
positive scalar curvature metric.

For d ≥ 3 things become more difficult. For so-called spin-manifolds there is
the α-invariant denoted by α(M). It is a topological invariant, but it can also
be constructed using a metric g – similar to the Euler characteristic in the above
setting. One can show that a positive scalar curvature metric can only exist if
α(M) = 0.

The next step is to ask how many positive scalar curvature metrics there are.
To be more precise, one defines the set

R+(M) := {positive scalar curvature metrics on M}.

It comes with a natural topology. One topological interpretation of how many pos-
itive scalar curvature metrics there are is to examine the richness of the homotopy
groups πk(R+(M)).
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Recall that two metrics g0 and g1 are isotopic if there is a family of metrics
gt : [0, 1] → R+(M) that varies smoothly in t. Write [g] for the class of metrics
that are isotopic to g. It turns out that

π0(R+(M)) = {[g] : g is a positive scalar curvature metric on M} .

In general, finding nontrivial elements in the homotopy groups πk(R+(M)) is hard.
Similar to the α-invariant above, there is a relative α-invariant, denoted αrel, which
depends on the dimension of the manifold and the homotopy group that we use
for it. For example, if we consider k = 0 then αrel(g0, g1) = 0 if g0 and g1 are
isotopic.

Another approach to studying positive scalar curvature metrics further is to
study them up to concordance. Two metrics g0 and g1 are called concordant if
there is a metric g̃ ∈ R+(M × [0, 1]) such that g̃ = gj + dt2 for j = 0, 1 near
the boundary of M × [0, 1]. Note that isotopy implies concordance. The reverse
implication is still an open question. One of Thorsten’s recent achievements was
to construct a set R̃+(M) such that

π0(R̃+(M)) = {concordance classes of positive scalar curvature metrics on M}.

Somewhat by accident, the fundamental group π1(R̃+(M), g0) is in bijection with
self-concordance classes of g0 of positive scalar curvature metrics on M .

The reason to study R̃+(M) is that αrel is difficult to compute for explicit ex-
amples. In particular, it is not known whether αrel might depend only on the con-
cordance class as opposed to the isotopy class. Studying R̃+(M) is an attempt to
tackle this problem by considering the corresponding construction for πk(R̃+(M)).
Finally, another motivation is that we have an injection R+(M) ↪→ R̃+(M). It
might be easier to detect non-trivial elements of πk(R̃+(M)), which could then
lead to a tool for finding non-trivial elements of πk(R̃+(M)).

Introduction to the
circle method

Rok Havlas
Communicated by Zhicheng Han
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Consider the following equation:

x2 + y2 + z2 + w2 = N

Can we solve them with integral solutions (x, y, z, w) ∈ Z4 for any natural number
N ∈ N?

The first affirmative answer to this question is due to Joseph-Louis Lagrange
back in 1770, known today as Lagrange’s 4-square theorem

In the same year, Edward Waring published his famous monograph Medita-
tiones Algebraicae, in which he asserted that every natural number is the sum
of at most 4 squares, or 9 cubes, or 19 biqudrates (which means fourth powers,
and similiarly tesseratics as five power on, etc.), and so on. He also formulated
the the following Waring’s Problem:

Conjecture 12.1 (Waring). For every k ∈ N, there is a respective s ∈ N such that
every N ∈ N can be written as a sum of s-many k-th powers, i.e., the equation:

xk1 + xk2 + · · ·+ xks = N

has integral solutions for some (x1, · · · , xs) ∈ Zs.

After more than one century, This conjecture was finally answered by David
Hilbert in 1909 [Hil09]. Waring’s problem is nowadays also known as Hilbert-
Waring Theorem.

In 1920, G.H. Hardy and John Edensor Littlewood gave a new proof of War-
ring’s problem using a new method, today knwon as Hardy-Littlewood circle
method. In a nutshell this proof gave an asymptotic formula to the number of
ways to write large nautral number as a sum of s-many k-th powers.

The circle method is still a vital tool in number theory to this very day (after
a full century!) To understand the breadth of problems it can address, let us shift
our attention momentarily and consider another problem calledHasse Principle.
Consider the following problems:

(1) Does the equation x2 + y2 = −1 admit any integral solutions?
(2) Does the equation x2 − 3y2 = 2 admit any integral solutions?

The answer is negative to both questions. For the first problem, one may easily
check there is no real solution in the first place. For the second, one argue by
contrapositive: Suppose x is a solution , then x2 ≡ 2( mod 3), but this is not
possible, as for all integers, x2 ≡ 0 or 1 modulo 3. Succinctly we may summarize
these two ‘no’s as obstructions to the existence of integral solutions:
Condition I: There is a real solution to the equation;
Condition II: for each n ∈ N there is a solution to the equation mod n.

The above ( mod p)-methodology can be applied to any prime p. If we consider
∞ as a prime as well, then Condition I can also be seen as ( mod ∞)-solution.

Similarly we may ask the converse question:
Does these conditions also give a suffcient condition for the existence of integral

solutions?

https://en.wikipedia.org/wiki/Lagrange%27s_four-square_theorem 
https://en.wikipedia.org/wiki/Waring%27s_problem
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_circle_method
https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_circle_method
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The above equation is said to admit a Qp-solution if it can be solved ( mod p).
One should really think these Qp as the ‘local’ part of information (for which it
earns the name local fields, as opposed to their Q-counterpart which are called
global fields.) Moreover, we call those cases for which the conditions are suffcient
that the Hasse-Principle holds. This in turn is also called local-to-global
principle.

We give an example and a counterexample for Hasse principle. The Hasse prin-
ciples holds for quadratic forms. More precisely, we have the following theorem:

Theorem 12.2 (Hasse-Minkowski). Let F ∈ Z[x1, · · · , xs] a quadratic form Then
F = 0 has non-trivial integral solutions if and only if it has real solutions, and
Qp-solutions for all prime ps.

Note the result cannot be extended to any forms of higher degree. A famous
counterexample was due to Ernst Selmer in 1951:

Example 12.3 ([Sel51]). The equation 3x3 +4y3 +5z3 = 0 has real solutions and
Qp-solutions but does not admit integral solutions.

The obstruction to the validity of Hasse principles is gauged by Brauer-Manin
Obstruction, namely: Hasse principle does not hold true for varieties with non-
trivial associated Brauer group. (For brevity we shall not discuss what the Brauer
group is. One could think it as the equivalence class of central simple algebras.)
Using Brauer-Manin obstruction Peter Swinnerton-Dyer in 1962 constructed
a counterexample in degree 4 [SD62]:

7x4
1 + 8x4

2 − 9x4
3 − 14x4

4 = 0

The reader should note that Brauer-Manin obstructions cannot fully determines
validity of Hasse principle. On one hand , Alexei Skorobogatov further proved
in [Sko99] that Brauer-Manin obstruction does not measure the full degree of
failure, that is, there are cases when Brauer-Manin obstruction vanishes, yet Hasse
principles still fails to hold. On the other hand, Jean-Louis Colliot-Thélène
proved in [PV04] that Brauer-Manin obstruction is VOID for any non-singular
hypersurface in more than Pn for n ≥ 5

Let use return to the beginning of this question. Having showed the failure of
Hasse-principle for cubic and quartic forms in 3-variables and 4-variables respec-
tively, one would ask another sensible question:
what would be the least number of variables for which the Hasse principles holds?
In cubic forms, the best lower bound is known to be 14, whereas in quartic

forms Oscar Marmon and Pankaj Vishe [MV19] proved in 2019 that the best
bound could be refined to 29. All these refinements used circle methods.

So, what is circle method?
To understand it, first consider a system of polynomials (f1, . . . fs) of n vari-

ables, that is, fi ∈ Z[X1, · · · , Xn]. Let B ⊆ Rn be a box with sides parallel to

https://en.wikipedia.org/wiki/Hasse_principle
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coordinate axes. We also denote BB be the dilation of the dilation of the box by
the factor B ≥ 1. Now we denote:

N(B) = # {X ∈ Z ∩BB}
the number of integral solutions to the system of polynomials. Suppose further
all fi are homogeneous and cut out a nonsingular complete intersection zero set
X ⊆ Pn−1. To show the variety f1 = · · · = fs has an integral point, we suffices to
show that N(B) > 0 for B sufficiently large, where we also choose B accordingly.

Define e(z) := e2πiz the suitably normalized function on z ∈ R. For any z ∈ R.
now by orthogonality, we have:

N(B) =
∑
x

∫ 1

0

e(αF (x))dα =

∫ 1

0

∑
x

e(αF (x))dα

which we denote the integrand as S(α). Hence we can alternatively take:

S(α) =
∑

x∈Zn∩BB

e(α1f1(x) + · · ·+ αnfn(x))

that is, the number of solution becomes integration of some exponential sum. Now
the circle method enters the scene by giving an apt asymptotic analysis of the the
integral as B → ∞. In so doing, we split the unit circle (as e(z) sweeps through
the unit interval) into major arc, which accounts for the major contribution, and
minor arc, which can be considered as ‘noise’ occurred during applying Fourier
analysis.

Now if X is a complete intersection of s-many hypersurfaces of deg d1 · · · ds
such that X is non-singular and projective, then we may assume both major and
minor arcs are well-behaved like aforementioned with

∏
ν σν absolutely convergent,

from which we can conclude the Hasse Principle holds for X. Indeed, X(R) 6= 0
implies B is a small box centered around a nonsingular point, which implies the
real density σ∞ > 0. In similar fashion, X(Qp) 6= 0 for all p also implies

∏
p σp > 0,

that N(B) > 0 for B sufficiently large altogether implies X(Q) 6= 0.
Another perspective of this method is rather probabilistic. As α runs through

the unit cube, we expect the exponential e(α1f1+· · ·+αsfs) to be rather randomly
scattered around the unit circle as we perturb x ∈ Zn, this brought another version
of central limit theorem: S(α) should be roughly of order Bn/2.
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Representing homology
classes as manifolds

Thorben Kastenholz
Communicated by David Kern

This article is about Thorben Kastenholz’ field of research, which is in the
intersection of the algebraic topology of manifolds and differential topology. Up
to now, he was working with Ursula Hamenstädt at Bonn University, where he
handed in his PhD thesis in September 2020. In short, he is interested in the
minimal genus of surface bundles and the corresponding maps. In the following
there will be a short introduction to his latest problems.

Let M be a smooth, oriented and compact manifold of dimension 2k for k ∈ N.
A bilinear form (·, ·) on the de Rham cohomology Hk(M ;R) is defined by

(α, β) =

∫
M

α ∧ β

for α, β ∈ Hk(M ;R). If k is odd, then the bilinear form (·, ·) is antisymmetric.
If k is even, it is symmetric and nondegenerate by Poincaré duality. Then the
vector space Hk(M ;R) splits in the subspaces V+ and V− where (·, ·) is positive
and negative definite, respectively. The dimensions of these subspaces yield the
signature of M :

σ(M) = dim(V+)− dim(V−).

This is an invariant of M .
Two manifoldsM and N are called bordant if there is another manifoldW such

that
∂W = M tN,

where N denotes N with the opposite orientation. If two manifolds are bordant,
then they have the same signature.

For a manifold M as before, another important invariant is the Euler charac-
teristic defined by

χ(M) =

k∑
i=1

(−1)i dimHk(M ;R),

where k is the dimension ofM . If k = 4l, the Euler characteristic and the signature
are related by σ(M) = 2χ(M). Let M → E → N be a fibre a bundle, that is, a
bundle with base manifold N whose typical fibre is the manifold M . Then E is a
manifold as well. The Euler characteristic of E may be computed as the product
χ(E) = χ(M)χ(N).
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There is, however, no such formula for the signature σ of a fibre bundle. For
instance, σ(E) 6= σ(M)σ(N) for the fibre bundle Σg −→ E −→ Σh with σ(E) 6= 0,
where g and h denote the genera of the base manifold and the typical fibre. This is
surprising because for trivializable fibre bundles and for fibre bundles with simply-
connected base manifoldN , the signature turns out to be multiplicative. This leads
to one of the central questions.

Question 13.1. Fix the genus g. What is the minimal genus of Σh, such that a
fibre bundle Σg −→ E −→ Σh with σ(E) 6= 0 exists?

Let X be a path-connected topological space and let Σg be a surface of genus g.
The following is well-known: for each α ∈ H2(X;Z) there is a continuous map
f : Σg −→ X such that f∗[Σg] = α. This leads to the second central open question:

Question 13.2. What is the minimal genus g such that α = f∗[Σg] for a given
α ∈ H2(X;Z)?

In the following, we assume g ≥ 5. Let BDiff(Σg) denote the classifying space
of Diff(Σg). The maps from a surface topological space X into BDiff(Σg) are in
bijective correspondence with fibre bundles Σg −→ E −→ X, that is,

(13.3) [X,BDiff(Σg)] ∼= {Σg −→ E −→ X}.

On the one hand, the second cohomology of BDiff(Σg) is isomorphic to the in-
tegers Z. On the other hand, it is isomorphic to Hom(H2(BDiff(Σg)),Z). Us-
ing the isomorphism (13.3), one can define a signature map from H2(BDiff(Σg))
to Z, mapping f to σ(Ef ), where Ef is the fibre bundle corresponding to f
by (13.3). The signature map, which we also denote by σ, generates all the maps
in Hom(H2(BDiff(Σg)),Z). This leads to another interesting question:

Question 13.4. What is the minimal g for which there is a generator τ of
H2(BDiff(Σg))?

In this homological framework, the isomorphism (13.3) leads to another inter-
esting question:

Question 13.5. What is the minimal genus of a sphere bundle Σg −→ E −→ Σh,
such that σ(E) = 4λ? What is λ?

Of course, one may wonder why we should restrict ourselves to surface bundles.
Why hot study fibre bundles with base manifolds and typical fibres of higher
dimensions? Some basic statements about the four questions above break down.
For example, for a higher-dimensional topological space X and α ∈ H2(X,Z),
there need not be a continuous map f : Σg −→ X such that f∗[Σg] = α. Thus it
becomes a lot more difficult to even state the right questions. This is also part of
the work in progress.
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Geometric quantization
– What are the

physicists doing?
David Kern

Communicated by Thorben Kastenholz

David holds a Bachelors Degree in electrical engineering from the University
of Ulm and a Masters Degree in Mathematical Physics from the University of
Würzburg. Since 2019, he is a PhD student in Göttingen and supervised by
Madeleine Jotz Lean, Ralf Meyer and Chenchang Zhu. His thesis subject is closely
related to his background from physics.

In classical mechanics, the system in question is described by a symplectic man-
ifold or more general by a Poisson manifold. In this case, points of this manifold
correspond to states of the physical system and smooth functions from the mani-
fold to R correspond to observables like place or energy. The smooth Hamiltonian
vector field (the Hamiltonian in the Poisson manifold sense of the Hamiltonian
energy function) yields a smooth flow on the manifold, which represents the time
evolution of the physical system. Infinitesimally, the time evolution of observ-
ables is described by the Poisson bracket of a function (“observable”) with the
Hamiltonian energy function.

Physicists have a way, called quantization, to associate to a classical mechanical
system a quantum mechanical system. The states of such a system are described
by a Hilbert space. Self-adjoint operators on this Hilbert space correspond to
observables and the infinitesimal time evolution of observables is described by
the Lie bracket of a self-adjoint operator/observable and the Hamiltonian energy
functional.

The harmonic oscillator is an illustrative example. Classically, it is described
by an ellipse, whereas quantum mechanically, the Hilbert space is given by L2(R).
In both cases, the periodic behaviour of the system is dictated by the description
of the Hamiltonian energy function and the resulting time evolution.

While physicists are capable of replacing a classical mechanical system by its
quantum mechanical analogue, mathematicians struggle to understand what physi-
cists are actually doing. Or in more technical terms: How does one assign a Hilbert
space to a Poisson manifolds in such a way that functions correspond to self-adjoint
operators and Poisson brackets to Lie brackets? Most importantly, the construc-
tion should represent the physical quantization process.

David is studying one of the candidates for a mathematical description of quan-
tization, the so called geometric quantization, which consists of three steps. A
helpful example to keep in mind is M = T ∗X.

• Prequantization. One assigns to the Poisson manifold M the space of L2-
functions on M , and functions become specific self-adjoint operators on
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this space. This does not suffice as it “depends on too many variables” (as
is the case with T ∗X).

• Quantization (Polarization). In the second step, one chooses a nice La-
grangian foliation F of the Poisson manifold M and replaces L2(M) by
L2(M/F ). Integration along the leaves of the foliation relates the Hilbert
spaces and the self-adjoint operators of the first and second step. (This
step would replace T ∗X by X.)

• Metaplectic Correction. While this process is mathematically sound, it
does not always represent the physical process of quantization. In order
to correct this, one has to do the metaplectic correction, which heavily
depends on the concrete example at hand.

There is a different way to think about Poisson manifolds, because they hap-
pen to be in one-to-one correspondence with Lie algebroids. David’s goal is to
study and understand the geometric quantization process from this Lie algebroid
perspective.
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Low-dimensional
topology
Léo Bénard

Communicated by Christian Bernert

The greatest ideas of mathematicians often start simply with a pencil and a
piece of paper. Suppose I put my pencil somewhere on this paper and start
drawing a line. It doesn’t have to be a straight line, it could be arbitrarily curved.
We just ask that it should be smooth, so it should not have any corners or self-
intersections. What can we end up with? Well, either we get bored after a while
and just stop somewhere. Or maybe we feel a sense of harmony and return to
the point where we started and stop there. Let us call these options Case A and
Case B. Of course in each case, there are still infinitely many figures we could end
up with, but from a rough point of view, they all look the same: All the figures
one could have produced in Case A roughly look like a (deformed) line segment,
while all the figures from Case B look like a loop, which, if you think about it, is
just a deformed circle. So while all the figures in each one of the cases more or
less look the same, a circle and a line segment are fundamentally different: For
instance, the line segment has two points (the boundary) where it stops, while at
every point on the circle you can go on in both directions. On the other hand, the
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circle divides the piece of paper in two regions, one that is inside and one that is
outside of the circle, while this does not happen for the line segment.

Figure 15.1. Typical outcomes of Case A (line) and Case B (circle)

Now Léo would say that what I just explained is a classification of smooth, com-
pact, connected one-dimensional manifolds, namely each such object either looks
like a circle or like a line segment. But he starts getting bored. Léo works in low-
dimensional topology which means that he likes to study geometric objects that
live in low dimensions, such as two, three or four dimensions. But one dimension
is really too low, even for him. So let’s move on.

Two-dimensional geometric objects are called surfaces. Again, we are interested
in smooth, compact, connected surfaces, and we want to classify them up to home-
omorphism which roughly speaking means that we identify objects that can be
deformed into each other without changing too much of how they look.15.1 As in
the one-dimensional case, we also allow these surfaces to have some boundary. For
example, a solid disk in the plane is a surface which has a circle as its boundary.
On the other hand, a balloon (or a two-dimensional sphere) is a surface which has
no boundary at all! However, there is more to surfaces than just the boundary :
They can also have holes. For instance, the surface of a doughnut has one hole in
the middle, while the surface of a pretzel has three and the balloon has no holes
at all. If you ever started with a ball of dough and wanted to form a doughnut or
a pretzel out of it, you will have noticed that it is not possible do to this without
seriously changing the geometry of its surface at some point.

Léo is again getting bored. He tells me that the genus (which is just a slightly
more fancy version of the number of holes) and the number of boundary components
are called topological invariants. This just means that they are the same whenever
two objects are homeomorphic. So it makes sense to use them for our classification
of surfaces up to homeomorphism. But even better: These two invariants taken
together are complete: We can check whether two surfaces are homeomorphic by
just checking whether these two invariants agree on them. So we have completely
solved the classification problem in the two-dimensional case. In fact, this was
already done more than a century ago. So let’s move on.

Léo is getting more excited. In three dimensions (3D), the fun only starts (or, if
you are pessimist, the trouble). One initial problem is that our imagination starts
to let us down with 3D manifolds. Just as we thought of surfaces as living in 3D
space, it would be natural to think of 3D manifolds as living in 4D space. However
this is quite hard for most human beings...

15.1This is not really the correct definition, but it is good enough for our purposes here.
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Figure 15.2. A sphere and the surfaces of a doughnut and a pretzel

As we have already learned, if we want to solve the classification problem, we
should try to find good and hopefully many invariants. For simplicity we restrict
to manifolds without boundary. This leaves us with the idea of the number of holes
from the case of surfaces. It is not immediately clear how to generalize this, but
mathematicians have found a clever way to do it, by attaching to each manifold
certain homology groups whose ranks we call Betti Numbers and these in some
sense measure the number of holes in our manifold.

Unfortunately, this invariant is not very powerful: For instance, there are
many very different manifolds which have the same Betti Numbers as the three-
dimensional sphere S3, but are not homeomorphic to it (for this reason, such
manifolds are known as (rational) homology spheres).

There is a refinement of the first homology group, known as the fundamental
group of M , which is denoted by π1(M). One can think of it as measuring how
many different ways there are to put a loop inside our manifold. In the case of
surfaces one can see that such a loop “gets stuck” at each hole, so one can imagine
that this notion is just another way to capture the number of holes.15.2

As a bonus, the fundamental group is not only an abstract group, but it comes
naturally with an action on another manifold M̃ , called the universal cover of M .
Using the representation theory of π1(M), Reidemeister in the 1930’s constructed
a numerical invariant, the so-called Reidemeister torsion which allowed him to
completely classify a certain subclass of 3D manifolds, the so-called Lens spaces –
something that was not possible with previously known invariants!

Another important class of 3D manifolds arises as knot complements. Here, a
knot is just a circle drawn in 3D space. As before, it is not allowed to intersect
itself but of course this does not prevent the circle from knotting itself. If we think
of the knot not just as a line but as a very thin solid tube, then the complement
M of the knot forms a 3D manifold.15.3

Knots give an intriguing way to study 3D manifolds. On the one hand, they
are very simple, combinatorial objects. On the other hand, they serve as “build-
ing blocks” for the theory: every 3D manifold can be obtained by gluing knot
complements! Because of this combinatorial nature, one can find many invari-
ants attached to knots. These knot invariants which could be numbers but also

15.2It is the content of the Poincaré conjecture, the only one of the Millenium Problems
solved so far, that the fundamental group can achieve what the homology groups could not: to
distinguish the 3-sphere from 3D manifolds not homeomorphic to it

15.3Technically, since we are interested in compact manifolds, we need to consider it as a
subset of S3 = R3 ∪∞ instead of just R3.
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Figure 15.3. A 2D picture of a knot as an embedded circle in
3D space and its thickened version

more complicated algebraic objects, sometimes give interesting links between knot
theory and other topics such as arithmetic and quantum physics.

Léo specifically is interested in knot invariants arising from a representation
ρ : π1(M)→ G where G is a Lie group andM is the knot complement, such as the
Reidemeister torsion. Here there are many interesting questions one can ask. For
instance, fixing M and G, one can ask how the Reidemeister torsion behaves as
one varies the representation ρ. One can also study the asymptotic behaviour of
the Reidemeister torsion asM varies over a family. In many cases, this asymptotic
behaviour recovers interesting geometric properties of our manifold M such as its
volume.

Léo is finally happy. 3D manifolds are not going to get boring any time soon.
There are many problems left to work on. I wish him good luck and a lot of fun!

Compiled by: Zhicheng Han
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